Office Automation-Use
3-Phase Brushless Motor Driver

Overview

The LB1820 is a three-phase brushless motor with a digital speed control circuit built in.
The LB1820 is ideally suited for use in office automation applications such as laser beam printers and drum motor drivers.

Features

- Three-phase brushless motor driver with digital speed control function
- 30 V withstand voltage and 2.5 A output current
- Current limiter built in
- Low-voltage protection circuit built in
- Thermal shutdown circuit built in
- Hall amp with hysteresis
- Start/stop pin built in
- Crystal oscillator and divider built in
- Digital speed control circuit built in
- Lock detector built in

Package Dimensions

unit: mm
3147C

Specifications

Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage 1	VCC		30	V
Maximum supply voltage 2	V_{M}		30	V
Output current	lo	$\mathrm{t} \leq 100 \mathrm{~ms}$	2.5	A
Allowable power dissipation 1	Pd max1	Independent IC	3	W
Allowable power dissipation 2	Pd max2	With arbitrarily large heat sink	20	W
Operating temperature	Topr		-20 to +80	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-55 to +150	${ }^{\circ} \mathrm{C}$

Allowable Operating Ranges at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage range 1	V_{CC}		9.5 to 28	V
Supply voltage range 2	V_{M}		5 to 28	V
Voltage regulator output current	$\mathrm{IVH}_{\mathrm{VH}}$		0 to +20	mA
Comparator output current	IOSC		0 to +30	mA
Lock detector output current	ILD		0 to +20	mA

Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
\square SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

LB1820

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{M}}=24 \mathrm{~V}$

Parameter	Symbol	Conditions	min	typ	max	Unit
Supply current 1	ICC1			33	50	mA
Supply current 2	ICC2	Stop mode		3	5	mA
Output saturation voltage	V_{O} (sat) ${ }^{1}$	$\mathrm{l}=1 \mathrm{~A}$		2.1	3.0	V
	$\mathrm{VO}\left(\right.$ sat) ${ }^{2}$	$\mathrm{lO}=2 \mathrm{~A}$		3.0	4.2	V
Output leak current	lo leak				100	$\mu \mathrm{A}$
Voltage regulator						
Output voltage	V_{H}	$\mathrm{l} \mathrm{VH}=10 \mathrm{~mA}$	3.8	4.15	4.5	V
Voltage variation	$\Delta \mathrm{V}_{\mathrm{H} 1}$	$\mathrm{VCC}=9.5$ to 28 V		60	150	mV
Load variation	$\Delta \mathrm{V}_{\mathrm{H}} 2$	IVH $=5$ to 20 mA		60	150	mV
Temperature coefficient				-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Hall amp						
Input bias current	IHB			1	4	$\mu \mathrm{A}$
Common-mode input voltage	VICM		1.5		2.8	V
Hall input sensitivity			100			mVp-p
Hysteresis width	$\Delta \mathrm{V}_{\text {IN }}$		24	33	42	mV
Low-to-high input voltage	VSLH		8	20	32	mV
High-to-low input voltage	VSHL		-25	-13	-1	mV
Oscillator						
High-level output voltage	V OH(CR)		2.9	3.2	3.5	V
Low-level output voltage	VOL(CR)		0.9	1.1	1.3	V
Oscillation amplitude			1.8	2.1	2.4	V
Oscillation frequency	f	$\mathrm{R}=30 \mathrm{k} \Omega, \mathrm{C}=1500 \mathrm{pF}$		18.5		kHz
Temperature coefficient	$\Delta \mathrm{f}$			0.1		\%/ ${ }^{\circ} \mathrm{C}$
Comparator output voltage	Vosc	$\mathrm{losc}=20 \mathrm{~mA}$			1.5	V
Current limiter						
Limiter 1	$\mathrm{V}_{\text {Rf }} 1$		0.42	0.5	0.6	V
Limiter 2	$\mathrm{V}_{\mathrm{Rf}} 2$		0.4	0.44	0.48	V
Thermal shutdown						
Thermal shutdown temperature	TSD	Design target, Note 1	150	180		${ }^{\circ} \mathrm{C}$
Hysteresis width	$\Delta T S D$			30		${ }^{\circ} \mathrm{C}$
Low-voltage protection voltage	VLVSD		7.5	8.1	8.7	V
Hysteresis width	$\Delta \mathrm{V}$ LVSD		0.45	0.6	0.75	V
FG amp						
Input offset voltage	V IO(FG)		-10		+10	mV
Input bias current	IB (FG)		-1		+1	$\mu \mathrm{A}$
High-level output voltage	$\mathrm{VOH}(\mathrm{FG})$	$\mathrm{IFG}=-2 \mathrm{~mA}$	5.6	6.2	6.8	V
Low-level output voltage	VoL(FG)	$\mathrm{I}_{\mathrm{FG}}=2 \mathrm{~mA}$		1	1.5	V
FG input sensitivity		$10 \times$ Gain	5			mV
Schmitt width at next stage				16		mV
Operating frequency range					5	kHz
Open-loop voltage gain			60			dB
Speed discriminator						
High-level output voltage	$\mathrm{VOH}(\mathrm{D})$			4.7		V
Low-level output voltage	V OL(D)			0.3		V
Maximum clock frequency			1.0			MHz
Number of counts			2044	2046	2048	
Integrator						
Input offset voltage	VIO(INT)		-10		+10	mV
Input bias current	$\mathrm{I}_{\mathrm{B}(\mathrm{INT} \text {) }}$		-0.4		+0.4	$\mu \mathrm{A}$
High-level output voltage	$\mathrm{VOH}(\mathrm{INT})$		3.7	4.3	4.9	V
Low-level output voltage	VoL(INT)			0.8	1.2	V
Open-loop gain			60			dB
Gain-bandwidth product				1.6		MHz
Reference voltage			-5\%	V5/2	5\%	V

Note 1: For parameters which have an entry of "design target value" in the "Conditions" column, no measurements are made.
Continued on next page.

LB1820

Continued from preceding page.

Parameter	Symbol	Conditions	min	typ	max	Unit
5 V supply	V5		4.6	5	5.4	V
Lock detector						
Low-level output voltage	V OL(LD)	$\mathrm{l}_{\mathrm{LD}}=10 \mathrm{~mA}$			0.5	V
Lock range				± 3.125		\%
Start/stop pin						
Start/stop operating voltage			0.4	0.5	0.6	V
Crystal Oscillator						
Precision of oscillating frequency		Referenced to indicated frequency	-500		+500	ppm
Temperature coefficient				-3		ppm/ ${ }^{\circ} \mathrm{C}$
Drift in rotational speed				± 0.01		\%

Truth Table

	Source \rightarrow Sink	Input		
		IN1	IN2	IN3
1	OUT3 \rightarrow OUT2	H	H	L
2	OUT3 \rightarrow OUT1	H	L	L
3	OUT2 \rightarrow OUT1	H	L	H
4	OUT2 \rightarrow OUT3	L	L	H
5	OUT1 \rightarrow OUT3	L	H	H
6	OUT1 \rightarrow OUT2	L	H	L

Pin Assignment

Internal Equivalent Circuit Block Diagram

LB1820

Pin Description

Pin No.	Pin Name	Functions
19, 20	$\mathrm{IN}^{+1}, \mathrm{IN}^{-1}$	OUT1: Hall element input pins for Phase 1. "H" logic is the state when $\mathrm{IN}^{+}>\mathrm{IN}^{-}$.
17, 18	$\mathrm{IN}^{+} 2, \mathrm{IN}^{-2}$	OUT2: Hall element input pins for Phase 2. "H" logic is the state when $\mathrm{IN}^{+}>\mathrm{IN}^{-}$.
15, 16	$1 \mathrm{~N}^{+} 3, \mathrm{IN}^{-3}$	OUT3: Hall element input pins for Phase 3. "H" logic is the state when $1 N^{+}>1 \mathrm{~N}^{-}$.
6	OUT 1	Output pin 1.
8	OUT 2	Output pin 2.
10	OUT 3	Output pin 3.
2	$V_{C C}$	Power supply for other than output blocks.
12	V_{M}	Power supply for output blocks.
11	R_{f}	Output current detection pin. R_{f} is connected across this pin and GND to detect the output current as voltage.
14	GND	Ground for other than output blocks. The lowest potential of output transistor is the voltage at R_{f} pin.
3	CR	Sets the oscillating frequency of the switching regulator.
1	OSC	Outputs duty-controlled pulses. Open-collector output.
24	INTOUT	Integrator output pin (speed control pin). Varies the switching regulator output voltage.
25	INTIN	Integrator input pin.
23	Dout	Speed discriminator output pin. Goes LOW when the specified speed is exceeded.
4	C	Suppresses ripples in the motor current during operation of current limiter 2.
22	LD	Lock detection pin. Goes HIGH when the motor rotation speed is within the locking range.
27	FGIN ${ }^{-}$	FG pulse input (Start/Stop control) pin.
26	FGIN ${ }^{+}$	FG pulse input (4 V supply) pin.
28	FGout	FG amp output pin.
21	Xtal	Crystal oscillator connecting pin.
13	5 V	5 V supply pin.

Operation Notes

Speed Control Circuit

This IC uses a speed discrimination circuit to perform speed control. The rotation accuracy of the speed discrimination method depends on the counter count. The counter count in this IC is 2046. On the FG1 cycle, a speed error signal with a resolution of $1 / 2046$ is output from the Dout pin (charge pump method).
The Dout output shifts among three states: high, high impedance, and low:

High	: Output S (acceleration signal)
High impedance	: When neither output S nor output F is output
Low	: Output F (deceleration signal)

The relationship between the FG frequency (f_{FG}) and the quartz oscillation frequency (fOSC) can be calculated as follows:

$$
\begin{aligned}
\mathrm{f}_{\mathrm{FG}}= & \mathrm{fOSC} \div(\text { ECL division ratio } \times \text { count }) \\
& f^{\text {fOSC }} \div(8 \times 2046) \\
& f_{\mathrm{OSC}} \div 16368
\end{aligned}
$$

PAM Drive System

This IC controls motor rotations by configuring an external switching regulator, and controlling the voltage $\left(\mathrm{V}_{\mathrm{M}}\right)$ of the regulator.
Select a switching regulator diode with a short reverse recovery time such as an FRD (First Recovery Diode). Because even a smooth coil can become a noise source, attention must be paid to the arrangement of components on the board (especially avoiding the effects of FG signal lines and integrated amplifiers).
Select a normal rectifier diode for the upper and lower motor drive pin section (OUT1 to 3).

Current Limiter Circuit

The current limiter circuit consists of two limiter circuits.
(1) Limiter 1

Detection voltage $\mathrm{V}_{\mathrm{Rf}} 1=0.5 \mathrm{~V}$ typ. Current is limited by putting the lower output transistor in the nonsaturated state and then dropping the voltage applied to the motor.
(2) Limiter 2

Detection voltage $\mathrm{VRf}_{\mathrm{R}} 2=0.44 \mathrm{~V}$ typ. The V_{M} voltage is limited by limiting the OSC pin "on duty" ratio.
Normally, if an excessive load is put on the motor, limiter 1 operates first, and after a delay in the switching regulator, limiter 2 operates.
Sometimes, after startup, the ASO of the output transistor is very severe. In such a case, it is necessary to perform a soft start (in which V_{M} is increased gradually). When using soft starts, connect a capacitor between the pin ($\mathrm{V}_{\mathrm{M}}, 5 \mathrm{~V}$, etc.) on which the voltage is to be increased during startup and the C pin. If soft starts are not to be used, connect a capacitor between the C pin and ground.

Speed Lock Range

The speed lock signal is output from the LD pin. The speed lock range is within $\pm 3.13 \%$; if the motor rotations fall within the lock range, the LD pin goes low (open collector output).

Start/stop Operation

The $\mathrm{FG}_{\mathrm{IN}}{ }^{-}$pin also serves as the start/stop pin. When the $\mathrm{FG}_{\mathrm{IN}}{ }^{-}$pin is connected to a transistor, etc., and the voltage is 0.5 V typ or less, the stop state goes into effect. In the stopped state, in addition to the drive outputs being turned off, the $\mathrm{FG}_{\mathrm{IN}}{ }^{+}, 5 \mathrm{~V}$, and other regulator outputs are also turned off.
When it is necessary to drive the motor at high speed, improvement is possible by adding a resistor (of approximately
$1 \mathrm{M} \Omega$) between FG out and V_{CC}. (The time from when the transistor is turned off until $\mathrm{FG}_{\mathrm{IN}}{ }^{-}$goes to 0.5 V is reduced.)

Initial Reset Operation

At startup, it is possible to apply an initial reset to the logic circuits by delaying the increase in voltage on $\mathrm{FG}_{\mathrm{IN}}{ }^{-}$. If an initial reset is not applied, the LD pin may go low from start until the FG pulse is input to the logic circuits (until output of approximately $16 \mathrm{mVp}-\mathrm{p}$ is generated on FGout).
When an FG reset is applied, the capacitor between the $\mathrm{FG}_{\mathrm{IN}}{ }^{+}$and GND should be $4.7 \mu \mathrm{~F}$ or more (in order to delay the rise in $\mathrm{FG}_{\mathrm{IN}}{ }^{-}$). Caution is required, because if the FG amplifier input capacitor is too small and the feedback capacitor is too large, the reset time will be shorter. At start, a delay of about $5 \mu \mathrm{~s}$ or more from the rising edge of the 5 V regulator output until the $\mathrm{FG}_{\mathrm{IN}}{ }^{-}$voltage goes to 1.2 V is desirable.

LB1820

PWM Frequency Setting

The PWM frequency is determined by the resistor and capacitor connected to the CR pin. When a resistor is connected to the $\mathrm{FG}_{\text {IN }}{ }^{+}$pin, the PWM frequency can be roughly calculated by the following formula:
$\mathrm{fPWM} \approx 1 \div(1.2 \times \mathrm{C} \times \mathrm{R})$
The resistor must not be less than $30 \mathrm{k} \Omega$. It is desirable for the PWM frequency to be about 15 kHz .

Quartz Oscillator

An oscillator, capacitor and resistor are to be connected to the quartz oscillator. When selecting the oscillator and the external capacitor and resistor, always obtain approval from the manufacturer of the oscillator in order to avoid problems.
(Circuit with external quartz oscillator)

External constants (reference values)

Xtal (MHz)	$\mathrm{C} 1(\mathrm{pF})$	$\mathrm{C} 2(\mathrm{pF})$	$\mathrm{R}(\mathrm{k} \Omega)$
3 to 4	39	82	0.82
4 to 5	39	82	1.0
5 to 7	39	47	1.5
7 to 10	39	27	2.0

However, use a crystal such that the base wave fo impedance : 3fo impedance $=1: 5$ or more

When inputting external signals (of several MHz) to the quartz oscillator, connect external components as shown in the diagram below.
$\mathrm{f}_{\mathrm{IN}}=1$ to 8 MHz
Input signal level
High level voltage: 4.0 V min.
Low level voltage: 1.5 V max.
$\mathrm{Ra}=2 \mathrm{k} \Omega, \mathrm{Rb}=1 \mathrm{k} \Omega$ (reference values)

Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
\square SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.

■ In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.

- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
\square Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of January, 2003. Specifications and information herein are subject to change without notice.

